Vibrational spectra of hexaaquacomplexes. XII. On the possible anion disorder in selenate alums: prediction of the crystal structure and vibrational spectra of KAl(SeO4)2·12H2O and related alums

Authors

  • Vladimir M. Petruševski Institute of Chemistry Faculty of Natural Sciences and Mathematics Ss. Cyril and Methodius University

DOI:

https://doi.org/10.20450/mjcce.2015.675

Keywords:

alums, crystal structure, prediction of, vibrational spectra, sulfates, selenates, anion disorder

Abstract

A survey is given for the crystallographic and vibrational spectroscopic results of a number of alums. From both types of results (structural and spectroscopic) it is positively known that the sulfate α-alums exhibit orientational disorder of the sulfate anions along the threefold symmetry axis. Both IR and Raman spectra confirm the finding for sulfate disorder in KAl(SO4)2·12H2O. Only the Raman spectra show clearly that the sulfate anions in many K, Tl and Rb are indeed disordered, in excellent agreement with the crystallographic results [1]. The disorder depends on the nature and size of MI cations in the structure, the smaller the radius, the larger the disorder. No anion disorder has thus far been detected in selenate alums. The structure prediction of KAl(SeO4)2·12H2O allows the existence of disorder of the selenate groups. The latter seems to be corroborated by the study of the Raman spectra of selenate α alums. It is thus worthwhile to have the crystal structure of KAl(SeO4)2·12H2O refined, in order to check this prediction and as an additional check of the general explanation for the sulfate anion disorder in alums, offered earlier [1].

Author Biography

Vladimir M. Petruševski, Institute of Chemistry Faculty of Natural Sciences and Mathematics Ss. Cyril and Methodius University

References

S. C. Nyburg, J. W. Steed, S. Aleksovska, V. M. Petruševski, Structure of the alums. I. On the sulfate group disorder in the α-alums, Acta Crystallogr., B56, 204–209 (2000).

В. Петрушевски, Б. Шоптрајанов, Г. Јовановски, Спектарот на водата кај некои сулфатни и селенатни стипси, 7. Југословенско саветовање „Општа и примењена спектроскопија“. Зборник радова, 1978, Ниш, 105–111.

B. I. Bashkov, L. N. Komissarova, F. M. Spiridonov, V. M. Shatsky, Vestn. Mosk. Univ. Khim., 5, 598–600 (1972).

A. Lari-Lavassani, C. Avinens, L. Cot, Préparation et étude radiocristallographique des aluns fluorobéryllates de chrome, C. R. Acad. Sci. Paris, C268, 1782–1784 (1969).

A. Lari-Lavassani, C. Avinens, L. Cot, Sur l’existence et la cristallographie de quelques nouveaux fluoro¬béryllates doubles de chrome [CH3NH3]Cr(BeF4)2•12H2O, [C(NH2)3]Cr(BeF4)2•12H2O et [C(NH2)3]Cr(BeF4)2•6H2O, C. R. Acad. Sci. Paris, C270, 1973–1975 (1970).

J. F. Spencer, G. T. Oddie, Preparation of lithium alum, Nature, 138, 169 (1936).

H. Lipson, C. A. Beevers, The crystal structure of the alums, Proc. Roy. Soc., A148, 664–680 (1934).

H. Lipson, Existence of three alum structures, Nature, 134, 327 (1935).

H. Lipson, The relation between the alum structures, Proc. Roy. Soc., A151, 347–356 (1935).

H. P. Klug, L. Alexander, Crystal-chemical studies of alums. III. Further solid solution studies, J. Am. Chem. Soc., 62, 2993–2995 (1940).

S. Haussühl, Kristallographie der alaune, I, Z. Kristallogr., 116, 371–405 (1961).

G. E. Bacon, W. E. Gardner, The structure of chromium potassium alum, Proc. Roy. Soc. Section, A246, 78–90 (1958).

R. O. W. Fletcher, H. Steeple, Dimorphism in methyl ammonium alum, Acta Crystallogr., 15, 960–963 (1962).

R. O. W. Fletcher, H. Steeple, The crystal structure of the low-temperature phase of methylammonium alum, Acta Crystallogr., 17, 290–294 (1964).

D. T. Cromer, M. I. Kay, A. C. Larson, Refinement of the alum structures. I. X-ray and neutron diffraction study of CsAl(SO4)2•12H2O, a β alum, Acta Crystallogr., 21, 383–389 (1966).

D. T. Cromer, M. I. Kay, A. C. Larson, Refinement of the alum structures. II. X-ray and neutron diffraction study of NaAl(SO4)2•12H2O, γ alum, Acta Crystallogr., 22, 182–187 (1967).

A. C. Larson, D. T. Cromer, Refinement of the alum structures. III. X-ray study of the α alums, K, Rb and NH4Al(SO4)2•12H2O, Acta Crystallogr., 22, 793–800 (1967).

D. T. Cromer, M. I. Kay, Refinement of the alum structures. IV. Neutron diffraction study of deuterated ammonium alum, ND4Al(SO4)2•12D2O, an α alum, Acta Crystallogr., 22, 800–805 (1967).

A. H. C. Ledsham, H. Steeple, The crystal structure of methylammonium chromium alum, Acta Crystallogr., B24, 320–322 (1968).

A. H. C. Ledsham, H. Steeple, The crystal structures of sodium chromium alum and caesium chromium alum, Acta Crystallogr., B24, 1287–1289 (1968).

A. H. C. Ledsham, H. Steeple, The classification of chromium alums, Acta Crystallogr., B25, 398–400 (1969).

A. H. C. Ledsham, H. Steeple, W. Hughes, The behaviour of the sulphate group in the alum structures, Acta Crystallogr., B26, 1240–1244 (1970).

M. I. Kay, D. T. Cromer, Thermal motion of the sulfate group in sodium alum NaAl(SO4)2•12H2O, Acta Crystallogr., B26, 1349–1355 (1970).

J. Sygusch, Refinement of β-alum CsTi(SO4)2•12H2O, Acta Crystallogr., B30, 662–665 (1974).

J. K. Beattie, S. P. Best, B. W. Skelton, A. H. White, Structural studies on the caesium alums, CsMIII[SO4]2•12H2O, J. Chem. Soc. Dalton Trans., 2105–2111 (1981).

A. M. Abdeen, G. Will, A. Weiss, Neutron diffraction study of alums, Z. Kristallogr., 154, 45–57 (1981).

A. M. Abdeen, G. Will, W. Schäfer, A. Kirfel, M. O. Bargouth, K. Recker, X-ray and neutron diffraction study of alums, Z. Kristallogr., 157, 147–166 (1981).

R. S. Armstrong, J. K. Beattie, S. P. Best, Crystal structures of the α alums CsM[SO4]2•12H2O (M = Rh or Ir), J. Chem. Soc. Dalton Trans., 1973–1975 (1983).

M. Brorson, M. Gajhede, Crystal structure of cesium molybdenium alum, Cs[Mo(H2O)6](SO4)2•6H2O at 110 K, Inorg. Chem., 26, 2109–2112 (1987).

R. S. Armstrong, J. K. Beattie, S. P. Best, G. P. Braithwaite, P. Del Favero, B. W. Skelton, Crystal structures of the selenate alums CsM[SeO4]2•12H2O (M = Al, Cr, Fe, Rh or In), Aust. J. Chem., 43, 393–398 (1990).

S. P. Best, J. B. Forsyth, Low-temperature neutron-diffraction structure of [Ru(OH2)6]3+ in the caesium sulphate alum lattice CsRu(SO4)2•12H2O, J. Chem. Soc. Dalton Trans., 3507–3511 (1990).

S. P. Best, J. B. Forsyth, Stereochemistry of tervalent aqua ions: low-temperature neutron diffraction structures of CsFe(SO4)2•12H¬2¬O and CsFe(SeO4)2•12H2¬O, J. Chem. Soc. Dalton Trans., 395–400 (1990).

S. P. Best, J. B. Forsyth, Relationship between the electronic and molecular structure of tervalent aqua ions: low-temperature neutron diffraction structure of CsCr(SO4)2•12H2O, J. Chem. Soc. Dalton Trans., 1721–1725 (1991).

S. P. Best, J. B. Forsyth, P. L. Tregenna-Piggott, Influence of the stereochemistry of water co-ordination to metal(III) cations on the M–O bond length and electronic structure of the cation, J. Chem. Soc. Dalton Trans., 2711–2715 (1993).

J. K. Beattie, S. P. Best, F. H. Moore, P. Del Favero, B. W. Skelton, A. H. White, Water molecule dispositions in the caesium sulfate α and β alums: single-crystal neutron diffraction studies of CsM[SO4]2•12H2O (M = V, Rh), Aust. J. Chem., 46, 1337–1345 (1993).

S. P. Best, B. N. Figgis, J. B. Forsyth, P. A. Reynolds, P. L. W. Tregenna-Piggott, Spin distribution and bonding in [Mo(OD2)6]3+, Inorg. Chem., 34, 4605–4610 (1995).

J. K. Beattie, S. P. Best, P. Del Favero, B. W. Skelton, A. N. Sobolev, A. H. White, Alkali-metal vanadium sulfate β alums, MV[SO4]2•12H2O (M = K, Rb or Cs): structural anomalies related to unsymmetrical occupancy of the t2g (Oh) orbitals, J. Chem. Soc. Dalton Trans., 1481–1486 (1996).

B. N. Figgis, P. A. Reynolds, A. N. Sobolev, The structure of the α alums RbCr(SO4)2•12H2O and CsCr(SeO4)2•12H2O, Acta Crystallogr., C56, 731–734 (2000).

P. L. W. Tregenna-Piggott, D. Spichiger, G. Carver, B. Frey, R. Meier, H. Weihe, J. A. Cowan, G. J. McIntyre, G. Zahn, A.-L. Barra, Structure and bonding of the vanadium(III) hexa-aqua cation. 1. Experimental characterization and ligand-field analysis, Inorg. Chem., 43, 8049–8060 (2004).

M. V. Barashkov, A. I. Komyak, S. N. Shashkov, Vibrational spectra and structure of potassium alum KAl(SO4)2•12(H2O)x(D2O)1-x, J. Appl. Spectr., 71, 328–333 (2004).

N. Rempfer, H.-W. Lerner, M. Bolte, The ammonium chromium(III) alum NH4Cr(SO4)2•12H2O, Acta Crystal¬logr., E60, i80–i81 (2004).

L. Rees-Isele, E. Keller, In search of the true structure of the sodium chromium alum: crystal growth and structure of the double salt NaCr(SO4)2(H2O)6, Z. Naturforsch., 67b, 1229–1234 (2012).

L. Rees-Isele, H.-P. Winkler, E. Keller, In search of the true structure of the sodium chromium alum. II. Crystal growth and structure of the double salt NaCr(SO4)2(H2O)6•(CH3OH)0.6(2)•(H2O)1.5(5), Z. Natur¬forsch., 68b, 1288–1294 (2013).

M. Harmelin, C. Duval, Étude physico-chimique de la structure de l’alun de chrome, Mikrochim. Acta., 5–6, 863–882 (1960).

V. Ananthanarayanan, Vibrational spectra of the octahedral water complexes in hyd¬rated sulphates, Z. Phys. Chem. (Leipzig), 222, 102–110 (1963).

H. J. Prask, H. Boutin, Low-frequency motions of H2O molecules in crystals. III, J. Chem. Phys., 45, 3284–3295 (1966).

К. Н. Петров, Н. К. Болъшакова, В. В. Кравченко, Л. Д. Исхакова, ИК спектроскопическое исследование квасцов, Ж. Неорг. Хим., XV, 2938–2944 (1970).

J. A. Campbell, D. P. Ryan, L. M. Simpson, Interionic forces in crystals. II. Infrared spectra of SO4 groups and “octahedrally” coordinated water in some alums, Tutton salts, and the double salts obtained by dehydrating them, Spectrochim. Acta, 26A, 2351–2361 (1970).

G. M. Venkatesh, P. S. Narayanan, Infrared absorption spectra of K, NH4 & Rb aluminium alums, Ind. J. Pure Appl. Phys., 9, 39–43 (1971).

A. Selvarajan, Raman & infrared spectra thallium aluminium sulphate dodecahydrate and thallium aluminium selenate dodecahydrate, Ind. J. Pure Appl. Phys., 9, 166–168 (1971).

С. Н. Андреев, М. Ф. Смирнова, К вопросу о состоянии молекул воды в гидратных оболочках ионов, Ж. Физ. Хим., XLVI, 1793–1796 (1972).

N. Strupler, J. Guillermet, Étude de la déshydratation d’aluns de vanadium. II. Contribution à l’étude de la déshydratation, Bull. Soc. Chim. Fr., 1830–1834 (1974).

R. S. Krishnan, P. S. Narayanan, G. M. Venkatesh, Spectroscopic study of sulphate group: order–disorder in alum family of crystals, Proc. 5th Int. Conf. Raman Spectr., Freiburg, 624–625 (1976).

H. H. Eysel, J. Eckert, Einkristall-Raman-spektren von alaunen. I. Innere schwingungen, frequenzbereich 300 bis 1200 cm–1, Z. anorg. Allg. Chem., 424, 68–80 (1976).

J. Eckert, H. H. Eysel, G. L. Kampffmeyer, Einkristall-Raman-spektren von alaunen. II. Raman-aktive gitter¬schwingungen und FIR-spektren, Z. anorg. Allg. Chem., 424, 81–86 (1976).

H. H. Eysel, G. Schumacher, Dynamic sulfate disorder in potassium alum, a single crystal Raman study, Chem. Phys. Lett., 47, 168–170 (1977).

S. P. Best, R. S. Armstrong, J. K. Beattie, Infrared metal–ligand vibrations of hexaaquametal(III) ions in alums, Inorg. Chem., 19, 1958–1961 (1980).

A. K. Sood, A. K. Arora, S. Dattagupta, G. Venkataraman, Raman study of orientational dynamics of sulphate ions in potash alum, J. Phys. C: Solid State Phys., 14, 5215–5224 (1981).

S. P. Best, R. S. Armstrong, J. K. Beattie, Vibrational spectroscopic studies of trivalent hexa-aqua-cations: single-crystal Raman spectra of caesium aluminium alums between 300 and 1200 cm–1, J. Chem. Soc. Dalton Trans., 1655–1664 (1982).

P. Bernard, A. Ludi, Infrared and Raman spectra of the hexaaquaruthenium ions: normal-coordinate analysis for Ru(H2O)62+ and Ru(H2O)63+, Inorg. Chem., 23, 870–872 (1984).

S. P. Best, J. K. Beattie, R. S. Armstrong, Vibrational spectroscopic studies of trivalent hexa-aqua-cations: single-crystal Raman spectra between 275 and 1200 cm–1 of caesium alums of titanium, vanadium, chromium, iron, gallium, and indium, J. Chem. Soc. Dalton Trans., 2611–2624 (1984).

S. P. Best, J. K. Beattie, R. S. Armstrong, G. P. Braithwaite, Vibrational spectroscopic studies of tervalent hexa-aqua-cations: oriented single-crystal Raman spectra between 275 and 1200 cm–1 of the caesium rhodium alums CsRh(SO4)2•12H2O, CsRh(SeO4)2•12H2O, and CsRh(SO4)2•12D2O, J. Chem. Soc. Dalton Trans., 1771–1777 (1989).

M. S. Brooker, H. S. Eysel, Raman study of the orientational dynamics in α-potassium alum and in the deuterated and oxygen-18 enriched forms, J. Phys. Chem., 94, 540–544 (1990).

V. I. Torgashev, Yu. I. Yuzyuk, L. F. Kirpichnikova, L. A. Shuvalov, Raman spectra of CH3NH3Al(SO4)2•12H2O and (CH3)2NH2Al(SO4)2•6H2O crystals, Ferroelectrics, 110, 13–20 (1990).

V. Petruševski, B. Šoptrajanov, Vibrational spectra of hexaaquacomplexes. I. Assignments of water librational bands in the spectra of some alums, J. Mol. Struct., 219, 67–72 (1990).

R. Malekfar, W. F. Sherman, Optical and dielectric parameters of KAl(SO4)2•12H2O derived from IR reflection measurements, J. Mol. Struct., 247, 343–354 (1991).

S. P. Best, R. S. Armstrong, J. K. Beattie, Single-crystal Raman spectroscopy of the α alums CsM(SO4)2•12H2O (M = Co or Ir) between 275 and 1200 cm–1, J. Chem. Soc. Dalton Trans., 299–304 (1992).

B. Šoptrajanov, V. Petruševski, Vibrational spectra of hexaaquacomplexes. IV. Multiple bands in the HOH bending region of some alums, J. Mol. Struct., 293, 101–104 (1993).

R. S. Armstrong, J. K. Beattie, S. P. Best, B. D. Cole, P. L. W. Tregenna-Piggott, Low-temperature polarized single-crystal Raman spectra of the β alums CsM(SO4)2•12H2O (M = Mo or Ru) between 275 and 1200 cm–1, J. Raman Spectr., 26, 921–927 (1995).

G. Suresh, R. Ratheesh, R. S. Jayasree, V. U. Nayar, G. Keresztury, Infrared and polarized Raman spectra of RbAl(SO4)2•12H2O, J. Solid State Chem., 122, 333–337 (1996).

P. L. W. Tregenna-Piggott, S. P. Best, Single-crystal Raman spectroscopy of the rubidium alums RbMIII(SO4)2•12H2O (MIII = Al, Ga, In, Ti, V, Cr, Fe) between 275 and 1200 cm–1, Inorg. Chem., 35, 5730–5736 (1996).

P. L. W. Tregenna-Piggott, S. P. Best, M. C. M. O’Brien, K. S. Knight, J. B. Forsyth, J. R. Pilbrow, Cooperative Jahn-Teller effect in titanium alums, J. Am. Chem. Soc., 119, 3324–3332 (1997).

P. L. W. Tregenna-Piggott, M. C. M. O’Brien, H. U. Güdel, J. R. Pilbrow, S. P. Best, Paramagnetism of caesium titanium alum and the Jahn–Teller interaction, J. Chem. Phys., 107, 8275–8291 (1997).

A. B. Berry, B. D. Cole, R. S. Armstrong, Raman spectra of the α-alums CsAl(SeO4)2•12H2O (M = Ga, In), J. Raman Spectrosc., 30, 73–76 (1999).

V. Ivanovski, V. M. Petruševski, B. Šoptrajanov, Vibrational spectra of hexaaquacomplexes. VIII. The antisymmetric SO4 stretching bands in alums: LO–TO superior to correlation-field and site-group splitting, J. Mol. Struct., 480–481, 689–693 (1999).

V. Ivanovski, V. M. Petruševski, B. Šoptrajanov, Vibrational spectra of hexaaquacomplexes. IX. Reflection infrared spectra, optical constants and longitudinal optical phonon–transversal optical phonon splitting in some alums, Vib. Spectrosc., 19, 425–429 (1999).

V. Ivanovski, V. M. Petruševski, B. Šoptrajanov, M. Zugik, Vibrational spectra of hexaaquacomplexes. X. Raman and IR studies of the sulfate group disorder in α-alums, J. Mol. Struct., 563–564, 329–333 (2001).

V. M. Petruševski, B. Šoptrajanov, Vibrational spectra of hexaaquacomplexes. XI. Spectroscopic criteria for the classification of the alum types, Bull. Chem. Techn. Macedonia, 21, 103–110 (2002).

P. Makreski, G. Jovanovski, S. Dimitrovska, Minerals from Macedonia. XIV. Identification of some sulfate minerals by vibrational (infrared and Raman) spectroscopy, Vib. Spectrosc., 39, 229–239 (2005).

A. Eriksson, J. Lindgren, Model calculations of the vibrations of bonded water molecules, J. Mol. Struct., 48, 417–430 (1978).

R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., A32, 751–767 (1976).

S. Aleksovska, V. M. Petruševski, Lj. Pejov, Crystal structures of members in isostructural series: prediction of the crystal structure of Cs2MnO4 – A β-K2SO4 type isomorph, Croat. Chem. Acta, 70, 1009–1019 (1997).

S. Aleksovska, S. C. Nyburg, Lj. Pejov, V. M. Petruševski, β-K2SO4 type isomorphs: prediction of structures and refinement of Rb2CrO4, Acta Crystallogr., B54, 115–120 (1998).

S. Aleksovska, V. M. Petruševski, B. Šoptrajanov, Calculation of the structural parameters in isostructural series: the kieserite group, Acta Crystallogr., B54, 564–567 (1998).

V. M. Petruševski, S. Aleksovska, Dependence of the crystal structure parameters on the size of the structural units in some isomorphous/isostructural series, Croat. Chem. Acta, 72, 71–76 (1999).

V. Petruševski, S. Aleksovska, Correlations between effective crystal radii and unit cell volume in Tutton salts, Croa¬t. Chem. Acta, 64, 577–583 (1991).

V. Petruševski, S. Aleksovska, Structural correlations in alums, Croat. Chem. Acta, 67, 221–230 (1994).

V. M. Petruševski, DISTAN – a computer program for calculation of interatomic distances and angles in crystal structures, unpublished.

H. M. Nussenzveig, Causality and Dispersion Relations, Academic Press, New York, 1972.

GRAMS ANALYSTTM for PE-2000 FT-IR, Version 3.01B Level II, Galactic Indus-tries, 1994.

GRAMS/32 Spectral Notebase, Version 4.10, Galactic Industries Corporation, 1996.

Downloads

Published

2015-06-01

How to Cite

Petruševski, V. M. (2015). Vibrational spectra of hexaaquacomplexes. XII. On the possible anion disorder in selenate alums: prediction of the crystal structure and vibrational spectra of KAl(SeO4)2·12H2O and related alums. Macedonian Journal of Chemistry and Chemical Engineering, 34(1), 73–85. https://doi.org/10.20450/mjcce.2015.675

Issue

Section

Spectroscopy