A lag-time model for substrate and product diffusion through hydroxyethylcellulose gels used for immobilization of yeast cells

Authors

  • Elena Velickova Department of Food Technology and Biotechnology, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University, Rudjer Bošković 16, 1000 Skopje
  • Slobodanka Kuzmanova Department of Food Technology and Biotechnology, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University, Rudjer Bošković 16, 1000 Skopje
  • Eleonora Winkelhausen Department of Food Technology and Biotechnology, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University, Rudjer Bošković 16, 1000 Skopje

DOI:

https://doi.org/10.20450/mjcce.2011.73

Keywords:

immobilization, Saccharomyces cerevisiae, diffusion, hydroxyethylcellulose, cryogel

Abstract

Diffusion models were tested to select the most appropriate model for measuring the diffusion of glucose and ethanol trough hydroxyethylcellulose (HEC) cryogels. The lag-time model was selected as accurate, rapid and reliable for evaluating the diffusivity of the solutes. The diffusion coefficient of glucose through the HEC cryogel loaded with cells was estimated to be 6.9×10-6 cm2/s, while the diffusion coefficient of ethanol had a value of 2.5×10-5 cm2/s. The cells inside the gel matrix were not a barrier for the transport of the solute molecules. The diffusion properties of the cryogel were also examined in a real system. The parameters characterizing the repeated batch fermentation of glucose to ethanol by entrapped Saccharomyces cerevisiae cells gave evidence of very good diffusion properties of the HEC gel.

References

K.D. Vorlop, J. Beyersdorf, A. Muscat, Entrapment of microbial cells within polyurethane hydrogel beads with the advantage of low toxicity. Biotechnol. Techn. 6 (1992), 483–488.

G.F. Bickerstaff, Immobilization of Enzymes and Cells: Some Practical Considerations. In: Bickerstaff, G. F., editor: Methods in Biotechnology Vol 1. Totowa, NJ: Humana Press Inc., (1997), 1–11.

P. Karagöz, E. Erhan, B. Keskinler, M. Özkan, The use of microporous divinyl benzene copolymer for yeast cell immobilization and ethanol production in packed-bed reactor. Appl. Biochem. Biotechnol., 152, (2009) 66–73.

P. Petrov., E. Petrova, B. Tchorbanov, Ch. Tsvetanov, Synthesis of biodegradable hydroxyethylcellulose cryogels by UV irradiation. Polymer, 48, (2007), 4943–4949.

E. Winkelhausen, R. Jovanovic-Malinovska, S. Kuzmanova, M. Cvetkovska, Ch. Tsvetanov, Hydrogels based on u.v.-crosslinked poly(ethylene oxide) – matrices for immobilization of Candida boidinii cells for xylitol production. World J. Microbiol. Biotechnol., 24 (2008), 2035–2043.

V. I. Lozinsky, Polymeric cryogels as a new family of macroporous and supermacroporous materials for biotechnological purposes. Russ. Chem. Bull. International Edition, 57 (2008), 1015–1032.

E. de Alteriis, D. Porro, V. Romano, P. Parascandola, Relation between growth dynamics and diffusional limitations in Saccharomyces cerevisiae cells growing as entrapped in an insolubilised gelatine gel. FEMS Microbiol. Lett., 195 (2001), 245–251.

J. L. van Roon, M.M.H.D. Arntz, A. I. Kallenberg, M. A. Paasman, J. Tramper, C. G. P. H. Schroen, H. H. Beeftink, A multicomponent reaction-diffusion model of a heterogeneously distributed immobilized enzyme. Appl. Microbiol. Biotechnol., 72 (2006), 263–278.

A. C. F. Ribeiro, O. Ortona, S. M. N. Simoes, C. I. A. V. Santos, P. M. R. A. Prazeres, A. J. M. Valente, V. M. M. Lobo, H. D. Burrows, Binary mutual diffusion coefficients of aqueous solutions of sucrose, lactose, glucose and fructose in the temperature range from (298.15 to 328.15) K. J. Chem. Eng. Data, 51 (2006), 1836–1840.

B. J. M. Hannoun, G. Stephanopoulos, Diffusion coefficients of glucose and ethanol in cell-free and cell-occupied calcium alginate membranes. Biotechnol. Bioeng., 28 (1986), 829–835.

Axelsson, B. Persson, Determination of effective diffusion coefficients in calcium alginate gel plates with varying yeast cell content. Appl. Biochem. Biotechnol, 18 (1988), 231–250.

W. Zhang, C. M. M. Franco, Critical assessment of quasi-steady-state method to determine effective diffusivities in alginate gel membranes. Biochem. Eng. J., 4 (1999), 55–63.

T. Riede, E. U. Schlunder, Diffusivities of the ternary liquid mixture 2-propanol-water-glycerol and three-component mass transfer in liquid. Chem. Eng. Sci., 46 (1991), 609–617.

E. Velickova, P. Petrov, Ch. Tsvetanov, S. Kuzmanova, M. Cvetkovska, E. Winkelhausen, Entrapment of Saccharomyces cerevisiae cells in u.v. crosslinked hydroxyethylcellulose/ poly(ethylene oxide) double-layered gels. React. Funct. Polym., 70 (2010), 908–915.

J. S. Mackie, P. Meares, The diffusion of electrolytes in a cation-exchange resin membrane I. Theoretical. Proc. R. Soc. Lond., A232 (1955), 498–509.

A. G. Ogston, The space in a uniform random suspension of fibres. Trans. Far. Soc., 54 (1958), 1754–1757.

S. U. Li, J. L. Gainer, Diffusion in polymer solutions. Ind. Eng. Chem. Fund, 7 (1968), 432– 440.

R.E. Beck, J.S. Schultz, Hindrance of solute diffusion within membranes as measured with microporous membranes of known pore geometry. Biochem Biphys Acta, 255 (1972), 273–303.

R. Namikawa, H. Okazaki, K. Nakanishi, R. Matsuno, T. Kamikubo, Diffusion of saccharides and amino acids in solutions of dextrans and its derivatives. Agric. Biol. Chem., 41 (1977), 1003– 1009.

H. Braselman, J. Vacik, J. Kopecek, D. Kirstein, Regulation of transport in artificial membranes by environmental hydrogen-ion concentration. Eur. Polym. J., 16 (1980), 431–435.

J. Klein, P. Schara, Entrapment of living microbial cells in covalent polymeric networks, II. A quantitative study on the kinetics of oxidative phenol degradation by entrapped Candida tropicalis cells. App. Biochem. Biotechnol., 6 (1981), 91–117.

A. H. Muhr, J. M. V. Blanshard, Diffusion in gels. Polym., 23 (1982), 1012–1026.

R. I. Cukier, Diffusion of Brownian spheres in semidilute polymer solutions. Macromolecules, 17 (1984), 252–255.

K. A. Akanni, J. W. Evans, I. S. Abramson, Effective transport coefficients in heterogeneous media. Chem. Eng. Sci., 42 (1987), 1945–1954.

S. R. Lustig, N. A. Peppas, Solute diffusion in swollen membranes, IX. Scaling laws for solute diffusion in gels. J. Appl. Polym. Sci., 36 (1988), 735–747.

G. D. J. Philies, The hydrodynamic scaling model for polymer self diffusion. J. Phys. Chem., 93 (1989), 5029–5039.

E. Velickova, E. Winkelhausen, S. Kuzmanova, M. Cvetkovska, Ch. Tsvetanov, Hydroxyethylcellulose cryogels used for entrapment of Saccharomyces cerevisiae cells. React. Funct. Polym., 69 (2009), 688–693.

L. G. Longsworth, The diffusion of electrolytes and macromolecules in solution: a historic survey. Ann. NY Acad. Sci., 46 (1945), 211–240.

K. Nakanishi, S. Adachi, S. Yamamoto, R. Matsuno, A. Tanaka, T. Kamikubo, Diffusion of saccharides and amino acids in cross-linked polymers. Agric. Biol. Chem., 41 (1977), 2455–2462.

H. Tanaka, M. Matsumura, I. A. Veliky, Diffusion characteristics of substrates in Ca-alginate gel beads. Biotechnol. Bioeng., 26 (1984), 53–58.

S. Kuzmanova, S. Žerajic, E. Vandeska, F. Poposka, Physical studies of yeast cell immobilization in two-layer alginate gel beads. II. Diffusion characteristics. Kem. Ind., 39 (1990), 421–428.

B.A. Westrin, Diffusion measurements in gels. A methodological study. PhD thesis, Department of Chemical Engineering I. Lund University, Sweden (1991).

M. A. Taipa, J. M. S. Cabral, H. Santos, Comparison of glucose fermentation by suspended and gelentrapped yeast cells: an in vivo nuclear magnetic resonance study. Biotechnol. Bioeng., 41 (1993), 647–653.

Downloads

Published

2011-06-15

How to Cite

Velickova, E., Kuzmanova, S., & Winkelhausen, E. (2011). A lag-time model for substrate and product diffusion through hydroxyethylcellulose gels used for immobilization of yeast cells. Macedonian Journal of Chemistry and Chemical Engineering, 30(1), 85–96. https://doi.org/10.20450/mjcce.2011.73

Issue

Section

Biotechnology

Most read articles by the same author(s)