Experimental and theoretical (DFT) studies on poly[octa-μ3-acesulfamato-O,O:N,Oʹ;Oʹ,N:O,O-tetraaquatetrabarium(II)] and poly[octa-μ3-acesulfamato-O,O:N,Oʹ;Oʹ,N:O,O-tetraaquatetrastrontium(II)] complexes

Authors

  • Hasan İçbudak Ondukuz Mayis University, Faculty of Arts and Sciences, Department of Chemistry, 55139 Samsun
  • Güneş Demirtaş Ondokuz Mayis University, Faculty of Arts and Sciences, Department of Physics, 55139 Samsun
  • Necmi Dege Ondokuz Mayis University, Faculty of Arts and Sciences, Department of Physics, 55139 Samsun

DOI:

https://doi.org/10.20450/mjcce.2015.634

Keywords:

Acesulfamato ligand, Barium (II) complex, Strontium (II) complex, Density Functional Theory.

Abstract

Two new one-dimensional coordination polymers of barium (II) and strontium (II)-acesulfamato complexes such as [Ba(C4H4NO4S)2(H2O)]n (1) and [Sr(C4H4NO4S)2(H2O)]n (2) have been synthesized and their molecular structures were identified by X-ray diffraction technique. Both barium (II) and strontium (II) complexes crystallize in the centrosymmetric monoclinic space group P121/c1 and barium (II) and strontium (II) ions, which are surrounded by O- and N-atoms, have the coordination number of nine. Each complex forms a structure like a polymer extending parallel to the a-axis. The molecular structures of those complexes were stabilized by O―H···O and C―H···O hydrogen bonds.

Besides identifying their crystallographic structures, the geometric parameters were also calculated using density functional theory (B3LYP) with 6-31G base sets for the asymmetric units of the complexes. The calculated geometrical parameters were also compared to the geometric parameters of X-ray diffraction technique. Furthermore, molecular electrostatic potential maps were constructed and frontier molecular orbital calculations were done for the synthesized complexes. The results of the experimental and theoretical IR studies were also compared.

References

V.D. Duffy, G.H. Anderson, Position of The American Dietetic Association: Use of nutritive and nonnutritive sweeteners, J. Am. Diet. Assoc., 98, 580–587 (1998).

W.L. Hough-Troutman, M. Smiglak, S. Griffin, W.M. Reichert, I. Mirska, J. Jodynis-Liebert, T. Adamska, J. Nawrot, M. Stasiewicz, R.D. Rogers, J. Pernak, Ionic liquids with dual biological function: sweet and anti-microbial, hydrophobic quaternary ammonium-based salts, New J. Chem., 33, 26-33 (2009).

P. Nockemann, B. Thijs, K. Driesen, C.R. Janssen, K.V. Hecke, L.V. Meervelt, S. Kossmann, B. Kirchner, K. Binnemans, Choline saccharinate and choline acesulfamate: ionic liquids with low toxicities, J. Phys. Chem. B, 111, 5254-5263 (2007).

H. İçbudak, E. Adıyaman, N. Çetin, A. Bulut, O. Büyükgüngör, Synthesis, structural characterization and chromotropism of a Ni(II) and a Co(II) compound with acesulfamate as a ligand, Transition Met. Chem., 31, 666–672 (2006).

B.R. Srinivasan, S.Y. Shetgaonkar, C. Näther, W. Bensch, Solid state synthesis and characterization of a triple chain calcium(II) coordination polymer showing two different bridging 4-nitrobenzoate coordination modes, Polyhedron, 28, 534-540 (2009).

K.M. Fromm, Coordination polymer networks with s-block metal ions, Coordination Chemistry Reviews, 252, 856-885 (2008).

D. Maspoch, D. Ruiz-Molina, Magnetic nanoporous coordination polymers, J. Veciana, J. Mater. Chem., 14, 2713-2723 (2004).

J.L.C. Rowsell, A.R. Millward, K.S. Park, O.M. Yaghi, Hydrogen sorption in functionalized metal-organic frameworks, J. Am. Chem. Soc., 126, 5666-5667 (2004).

J.A. Rood, B.C. Noll, K.W. Henderson, Synthesis, structural characterization, gas sorption and guest-exchange studies of the lightweight, porous metal-organic framework α-[Mg3(O2CH)6], Inorg. Chem., 45, 5521-5528 (2006).

J. Kim, B. Chen, T.M. Reineke, H. Li, M. Eddaoudi, D.B. Moler, M. O’Keeffe, O.M. Yaghi, Assembly of metal-organic frameworks from large organic and inorganic secondary building units: New examples and simplifying principles for complex structures, J. Am. Chem. Soc., 123, 8239-8247 (2001).

M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reineke, M. O’Keeffe, O.M. Yaghi, Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks, Acc. Chem. Res., 34, 319-330 (2001).

S. Surblé, F. Millange, C. Serre, T. Düren, M. Latroche, S. Bourrelly, PL. Llewellyn, G. Férey, Synthesis of MIL-102, a chromium carboxylate metal-organic framework, with gas sorption analysis, J. Am. Chem. Soc., 128, 14889-14896 (2006).

N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2nd Edition, Elsevier Ltd., London, 1997.

R. Bomma, R. S. Naidu, M. Yamsani and K. Veerabrahma, Development and evaluation of gastroretentive norfloxacin floating tablets, Acta Pharm., 59, 211-221 (2009).

A.-L. Pélissier-Alicot, G. Léonetti, P. Champsaur, P. Allain, Y. Mauras, A. Botta, Fatal poisoning due to intravasation after oral administration of barium sulfate for contrast radiography, Forensic Science International, 106, 109-113 (1999).

F. Bosselmann and M. Epple, Sulfate-containing biominerals, in “Metal ions in life sciences” (S. Sigel, H. Sigel and R. K.O. Sigel, Eds.), vol. 4. , Wiley, Chichester, 207-217 (2008).

S.G. Dahl, P. Allain, P.J. Marie, Y. Mauras, G. Boivin, P. Ammann, Y. Tsouderos, P.D. Delmas, C. Christiansen, Incorporation and distribution of strontium in bone, Bone, 28, 446-453 (2001).

E. Shorr, A.C. Carter, The usefulness of strontium as an adjuvant to calcium in the remineralization of the skeleton in man, Bull. Hosp. Jt. Dis. Orthop. Inst., 13, 59–66 (1952).

Stoe & Cie (2002) X-AREA (Version 1.18) and X-RED32 (Version 1.04), Stoe & Cie, Darmstadt, Germany.

G.M. Sheldrick, A short history of SHELX., Acta Crystallogr., A64, 112-122 (2008).

L.J. Farrugia, ORTEP-3 for Windows- a version of ORTEP-III with a Graphical User Interface (GUI), J. Appl. Cryst., 30, 565 (1997).

C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler, J. van de Streek, Mercury: visualization and analysis of crystal structures, J. Appl. Cryst., 39, 453-457 (2006).

L.J. Farrugia, WinGX suite for small-molecule single-crystal crystallography, J. Appl. Cryst., 32, 837-838 (1999).

A.L. Spek, Single-crystal structure validation with the program PLATON, J. Appl. Cryst., 36, 7-13 (2003).

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian 03, Revision E.01, Gaussian Inc., Wallingford CT, (2004).

J.P. Merrick, D. Moran, L. Radom, An evaluation of harmonic vibrational frequency scale factors, J. Phys. Chem., A111, 11683-11700 (2007).

A. Frisch, R. Dennington II, T. Keith, J. Millam, A.B. Nielsen, A.J. Holder, J. Hiscocks GaussView Reference Version 40, Gaussian Inc., Pittsburgh, (2007).

P. Politzer, J.S. Murray, The fundamental nature and role of the electrostatic potential in atoms and molecules, Theor. Chem. Acc., 108, 134-142 (2002).

G. Demirtaş, N. Dege, H. İçbudak, Ö. Yurdakul, O. Büyükgüngör, Experimental and DFT studies on poly[diμ3-acesulfamato-O,O:O’;O’:O,O-di-μ-acesulfamato-O,O;N-di-μ-aqua-dicalcium(II)] complex, J. Inorg. Organomet. Polym., 22, 671-679 (2012).

Z.S. Şahin, F. Sevindi, H. İçbudak, Ş. Işık, Structural properties of trans-cylohexane-1,2-diamine complexes of copper(II) and zinc(II) acesulfamates, Acta Cryst., C66, m314-m318 (2010).

Z. S. Şahin, H. İçbudak, Ş. Işık, Di-μ-acesulfamato-κ3N,O:O;κ3O:N,O-bis[(acesulfamato-κ2N,O)]bis(3-methylpyridine)cadmium(II)], Acta Cryst., C65, m463-m465 (2009).

A. Bulut, H. İçbudak, G. Sezer, C. Kazak, Bis(acesulfamato-κ2N3,O4)bis(2-aminopyrimidine-κN1)copper(II), Acta Cryst., C61, m228-m230 (2005).

H. İçbudak, A. Bulut, N. Çetin, C. Kazak, Bis(acesulfamato)teraaquacobalt(II), Acta Cryst., C61, m1-m3 (2005).

W. Beck, E. Ambach, U. Nagel, Palladium- und platin(II)-komplexe mit den anionen von 6-methyl-1,2,3-oxathiazin-4(3H)-on-2,2-dioxid und N-2-pyrimidinylsulfanilamid, Chem. Ber., 118, 444–449 (1985).

M. Cavicchioli, A.C. Massabni, T.A. Heinrich, C.M. Costa-Neto, E.P. Abrão, B.A.L. Fonseca, E.E. Castellano, P.P. Corbi, W.R. Lustri, C.Q.F. Leite, Pt(II) and Ag(I) complexes with acesulfame: Crystal structure and a study of their antitumoral, antimicrobial and antiviral activities, Journal of Inorganic Biochemistry, 104, 533-540 (2010).

Downloads

Published

2015-04-16

How to Cite

İçbudak, H., Demirtaş, G., & Dege, N. (2015). Experimental and theoretical (DFT) studies on poly[octa-μ3-acesulfamato-O,O:N,Oʹ;Oʹ,N:O,O-tetraaquatetrabarium(II)] and poly[octa-μ3-acesulfamato-O,O:N,Oʹ;Oʹ,N:O,O-tetraaquatetrastrontium(II)] complexes. Macedonian Journal of Chemistry and Chemical Engineering, 34(1), 105–114. https://doi.org/10.20450/mjcce.2015.634

Issue

Section

Inorganic Chemistry