Graphene/(h-BN) n/X-doped graphene as anode material in lithium ion batteries (X=Li, Be, B and N)

Authors

  • Majid Monajjemi Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran

DOI:

https://doi.org/10.20450/mjcce.2017.1134

Keywords:

Graphene, Doping, Anode lithium, Ion battery, LIBs, Nano capacitor

Abstract

Abstract: In this study Boron nitride sheet has been localized inside two X-graphene electrodes as an option to enhance the electrochemical ratio. Additionally, we have found the structure of X-G/(h-BN)n/X-G (N = 2–5) can improve the capacity and electrical transport in C-BN sheet-based LIBs. Therefore, the modification of BN sheets and design of X-G/ (h-BN)n/X-G structure provide strategies for improving the performance of BN-G-based anodes. X-G/(h-BN)n/X-G could also be assembled into free- standing electrodes without any binder or current collector, which will lead to increased specific energy density for the overall battery design. In this work the measured reversible lithium ion capacities of X-G//(h-BN)//X-G (X = Be, B, N) based anodes are considerably improved compared to the conventional graphite-based anodes

References

R.C. Tatar, and S. Rabii, Electronic properties of graphite: A unified theoretical study Physical Review B, 25, 4126-41 (1982), https://doi.org/10.1103/PhysRevB.25.4126

E. K. Sichel, R. E. Miller, M. S. Abrahams, and C. J. Buiocchi, Superior thermal conductivity in suspended bilayer hexagonal boron nitride, Physical Review B, 13, 4607-11 (1976).

DOI: 10.1038/srep25334

S. G. Louie , M. L. Cohen, Electronic structure of a metal-semiconductor interface, Phys. Rev. B 13, 2461(1976) https://doi.org/10.1103/PhysRevB.13.2461

A. Zunger, A. Katzir, A. Halperin, Optical Properties of Hexagonal Boron Nitride, Physical Review B, 13, 5560-5573 (1976), DOI: 10.1103/PhysRevB.13.5560

W. H. Balmain, Bemerkungen ̈uber die Bildung von Verbindungen des Bors und Siliciums mit Stickstoff und gewissen J. Prakt. Chem, 27, 422-430 (1842)

T. Sato, Report of National Institute for Research in Inorganic Materials, Tsukuba, Japan (1987).

Z. G. Yang, J. L. Zhang, M .C .W. Kintner-Meyer, X. C. Lu, D. W. Choi, J. P. Lemmon, and J. Liu,

Electrochemical energy storage for green grid, Chem. Rev, 111, 3577–3613 (2011)

DOI: 0.1021/cr100290v

D. Guerard, A. Herold, Intercalation of lithium into graphite and other carbons, Carbon,13, 337-345 (1975). https://doi.org/10.1016/0008-6223(75)90040-8

E. J. Yoo, J. Kim, E. Hosono, H. S. Zhou, and T. Kudo , Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries, Nano Lett, 8, 2277-2282 (2008). DOI: 10.1021/nl800957b

G. Wang, X. P. Shen, J. Yao, and J. Park, Graphene Nanosheets for Enhanced Lithium Storage in Lithium Ion Batteries, Carbon, 47, 2049-2053 (2009).

T. Bhardwaj , A. Antic, B. Pavan, V. Barone, and B. D. Fahiman, Enhanced electrochemical lithium storage by graphene nanoribbons, JACS, 132, 12556-12558 (2010).

T. Suzuki, T. Hasegawa, S. R. Mukai, and H. Tamon, A theoretical study on storage states of Li ions in carbon anodes of Li ion batteries using, Carbon, 41, 1933-1939 (2003).

T. Hasegawa, T. Suzuki, S. R. Mukai, and H. Tamon, Semi-empirical molecular orbital calculations on the Li ion storage states in heteroatom-substituted carbon materials, Carbon, 42, 2195-2200 (2004). doi: 10.1016/j.carbon.2004.04.045

M. Noel, and V. Suryanarayanan, Role of carbon host lattices in Li-ion intercalation/de-intercalation processes Journal of Power Sources, 111,193–209 (2002), https://doi.org/10.1016/S0378-753(02)00308-7

J.L. Tirado, Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects, Materials Science and Engineering R , 40, 103–136 (2003).

L.J. Fu, H. Liu, C. Li, Y.P. Wu, E. Rahm, R. Holze, H.Q. Wu, Surface modifications of electrode materials for lithium ion batteries Solid State Sciences, 8, 113–128 (2006).

E. Frackowiak, and F. Béguin, electrochemical storage of energy in carbon nanotubes and nano structured carbons, Carbon, 40, 1775–1787 (2002).

M. S. Whittingham, A.J. Jacobson (Eds.), Intercalation Chemistry, Academic Press (1982).

S.A. Safran, and D.R. Hamann, Long-Range Elastic Interactions and Staging in Graphite intercalation Compounds Physical Review Letters. 42, (21), 1410–1413 (1979)

M.D. Levi, D. Aurbach, J. Maier, Electrochemically driven first-order phase transitions caused by elastic responses of ion-insertion electrodes under external kinetic control, Journal of Electroanalytical Chemistry, 624 (2008) 251–261.

H. Zabel, S. A. Solin (Eds.), Graphite Intercalation Compound I, Springer-Verlag, (1990).

Y.P. Wu, E. Rahm, and R. Holze, Carbon anode materials for lithium ion batteries,

Journal of Power Sources, 114, 228–236 (2003).; https://doi.org/10.1016/S0378-7753(02)00596-7

J.K. Lee, K.W. An, J.B. Ju, B.W. Cho, W.I. Cho, D. Park, and K.S. Yun, electrochemical properties of PAN-based carbon fibers as anodes for rechargeable lithium ion batteries Carbon, 39, 1299–1305 (2001).

C. De las Casas, and W.Z. Li, The defect size and Li concentration set two distinct fracture modes: abrupt fracture J. Power Sources, 208, 74–85 (2012).

Z. H. Yang, and H. Q. Wu, electrochemical intercalation of lithium into raw carbon nanotubes Mater. Chem. Phys,. 71, 7–11(2001)

K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.

Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films Science , 306 , 666–669 (2004). DOI: 10.1126/science.1102896

B. Partoens, and F.M. Peeters, from graphene to graphite: electronic structure around the K point. Physical Review B, 74, 075404-1–075404-11 (2006)

H. Tachikawa, and A. Shimizu, Diffusion Dynamics of the Li Atom on Amorphous Carbon: A Direct Molecular Orbital−Molecular Dynamics Study, Journal of Physical Chemistry B, 110, 20445–20450 (2006). DOI: 10.1021/jp061603l

K. Naoi, N.Ogihara, Y. Igarashi, A. Kamakura, Y. Kusachi, K. Utsugi, Disordered Carbon Anode for Lithium-Ion Battery: I. An Interfacial Reversible Redox Action and Anomalous Topology Changes

, Journal of the Electrochemical Society 152 (6) , A1047–A1053 (2005). doi:10.1149/1.1896531

H. Groult, B. Kaplan, S. Komaba, N. Kumagai, V. Gupta, T. Nakajima, and B. Simon, Journal of the Electrochemical Society 150 (2), G67–G75 (2003).

M. Endo, Y. Nishimura, T. Takahashi, K. Takeuchi, M.S. Dresselhaus, Lithium storage behavior for various kinds of carbon anodes in Li ion secondary battery, Journal of Physics and Chemistry of Solids 57 (6–8), 725–728 (1996).

T. Ohzuku, R.J. Brodd, An overview of positive-electrode materials for advanced lithium-ion batteries, Journal of Power Sources 174, 449–456 (2007).

M. Monajjemi, J.E. Boggs, A new generation of BnNn rings as a supplement to boron nitride tubes and cages, J. Phys. Chem. A, 117, 1670 −1684 (2013), DOI: 10.1021/jp312073q.

M. Monajjemi, V.S. Lee, M. Khaleghian, B. Honarparvar, and F. Mollaamin, Theoretical description of electromagnetic non-bonded interactions of radical, cationic, and anionic NH2BHNBHNH2 inside of the B18N18 nanoring,J. Phys. Chem. C. 114 15315 (2010) , DOI: 10.1021/jp104274z.

M. Monajjemi. Metal-doped graphene layers composed with boron nitride–graphene as an insulator: a nano-capacitor, Journal of Molecular Modeling , 20, 2507 (2014), DOI: 10.1007/s00894-014-2507-y.

M. Monajjemi, Non-covalent attraction of B2N (-, 0) and repulsion of B2N (+) in the BnNn ring: a quantum rotatory due to an external field, Theor Chem Acc, 134, 77 (2015), DOI 10.1007/s00214-015-1668-9.

M. Monajjemi, Quantum investigation of non-bonded interaction between the B15N15 ring and BH2NBH2 (radical, cation, anion) systems: a nano molecularmotor, Struct. Chem, 23 551 (2012), DOI: 10.1007/s11224-011-9895-8.

M. Monajjemi, M. Jafari Azan, and F. Mollaamin, Density Functional Theory Study on

B30N20 Nano-cage in Structural Properties and Thermochemical Outlook, Fullerenes, Nanotubes, and Carbon Nanostructures, 21(6), 503–515 (2013), DOI: 10.1080/1536383X.2011.629762

M. Monajjemi, non-bonded interaction between BnNn (stator) and BN (-, 0, +) B (rotor) systems: A quantum rotation in IR region, Chemical Physics. 425, 29-45 (2013) DOI: 10.1016/ j. chemphys. 2013. 07.014.

K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films , Science , 306 , 666–669 (2004). DOI: 10.1126/science.1102896

B. Partoens, F.M. Peeters, from graphene to graphite: electronic structure around the k point Physical Review B 74 075404-1–075404-11 (2006).

M. Monajjemi, M. Hosseini, M. Molaamin Theoretical study of boron nitride nanotubes with armchair forms, Fullerenes Nanotubes and Carbon Nanostructures , 21 , 5 , 381-393 ( 2013)

DOI: 10.1080/1536383X.2011.629752

L. Ravagnan, P. Piseri, M. Bruzzi, S. Miglio, G. Bongiorno, A. Baserga, C.S. Casari, A. Li Bassi, C. Lenardi, Y. Yamaguchi, T. Wakabayashi, C.E. Bottani, and P. Milani, Carbon-based materials with unique physical and electronic properties , Physical Review Letters 98, 216103-1–216103-4 (2007).: https://doi.org/10.1103/PhysRevLett.98.216103

P.N. Vishwakarma, and S.V. Subramanyam, Hopping conduction in boron doped amorphous carbon films,Journal of Applied Physics 100, 113702-1–113702-5 (2006). https://doi.org/10.1063/1.2372585

G. Rizzoni, Principles and Applications of Electrical Engineering, 4th ed., McGraw Hill, pp. 43–44 (2004)

K. Kitoh, and H. Nemoto, 100 Wh large size batteries and safety tests, Journal of Power Sources 81–82, 887–890 (1999).

H. Maleki, S.A. Hallaj, J.R. Selman, R.B. Dinwiddie, H. Wang, Thermal properties of lithium-ion battery and components Journal of the Electrochemical Society 146 (3), 947–954 (1999). DOI: 10.1149/1.1391704.

J.M. Tarascon, and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414, 359 (2001).; doi :10.1038/35104644

A.S. Claye, J.E. Fischer, C.B. Huffman, A.G. Rinzler, and R.E. Smalley, Electrochemical doping of single-wall carbon nanotube (SWNT) films and concomitant changes in their Journal of Electrochemical Society 147, 2845 (2000).; https://doi.org/JESOAN

J.N. Barisci, G.C. Wallace, and R.H. Baughman, carbon (GC), graphite and diamond, mainly in the special …Electrochimica Acta 46, 509 (2000).

J. Zhao, A. Buldum, J. Han, and J.P. Lu, First-principles study of Li intercalated nanotube rope Physics Review Letters 85, 1706 (2000).

G.T. Wu, et al., Journal of Power Sources, Lithium insertion into CuO /carbon nanotubes, 75 175-179 (1998)

H. Jalilian, and M. Monajjemi, Capacitor simulation including of X-doped graphene (X = Li, Be, B)

as two electrodes and (h-BN)m (m = 1 –4) as the insulator, Japanese Journal of Applied Physics. 54, 085101, (2015), DOI: 10.7567/JJAP.54.085101.

S.Y. Chew, S. H. Ng, J. Wang, Flexible free-standing carbon nanotube films for model lithium-ion batteries, Carbon 47 2976-2983, (2009).

M. Monajjemi, M. Khaleghian, EPR Study of Electronic Structure of [CoF6]3 2and B18N18 Nano Ring Field Effects on Octahedral Complex ,Journal of Cluster Science. 22 (4), 673-692, (2011), DOI: 10.1007/s10876-011-0414-2.

E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, F. Beguin, Electrochemical storage of lithium multi-walled carbon nanotubes, Carbon 37 61-69, (1999).

M. Monajjemi, M. Falahati, F. Mollaamin, Computational investigation on alcohol nano-sensors in combination with carbon nanotube: a Monte Carlo and ab initio simulation, Ionics, 19, 1,155-164 (2013) DOI: 10.1007/s11581-012-0708-x

S. Y. Chew, S. H. Ng, J .Wang, P. Novak, F. Krumeich, S. L. Chou, J. Chen, H . K. Liu. Carbon, 47, 2976 (2009). https://doi.org/10.1016

E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, and F. Beguin, Electrochemical storage of lithium multiwalled carbon nanotubes, Carbon, 37 61 (1999).

J. Zhao, Q.Y. Gao, C. Gu, Y. Yang, Preparation of multi-walled carbon ... intercalation behavior of Li ions, Chemical Physics Letters, 358 ,77-82 (2002).

Y. J. Hu , J. A. Jin , P. Wu , H. Zhang , C. X. Cai , Graphene–gold toward the oxygen reduction and glucose oxidation, Electrochim. Acta. 56, 491 (2010).

G.L. Che, B. B. Lakshmi, E.R. Fisher, C.R. Martin, Carbon nano- tubule for electrochemical energy storage and production, Nature 393, 346 (1998). https://doi.org/10.1038/30694

N.A. Kaskhedikar, J. Maier, Lithium storage in carbon nanostructures, Adv. Mater, 21, 2664–2680 (2009)

A. Thess, A, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H .Lee, S.G. Kim, and A.G. Rinzler. Science, 273, 483–487 (1996)

Y. Ando, X. Zhao, H. Shimoyama, G. Sakai, and K. Kaneto, Physical properties of multiwalled carbon nanotubes, Int. J. Inorg. Mater 1, 77–82 (1999) https://doi.org/10.1016/S1463-0176(99)00012-5

M. F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287, 637–640 (2000) https://doi.org/10.1126/science.287.5453.637

L.F. Cui, L. Hu, J.W. Choi, and Y. Cui, Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries, ACS Nano 4, 3671-8 (2010). doi: 10.1021/nn100619m

Q. wang, J.H. Li, Facilitated lithium storage in MoS2, Journal of Physical Chemistry C 111, 1675-1682 (2007).

G. Maurin, Ch. Bousquet, F. Henn, P. Bernier, R. Almairac, B. Simon, B. Electrochemical intercalation of lithium into multiwall carbon nanotubes. Chem. Phys. Lett, 312, 14–18, (1999)

A. Kiebele, and G. Gruner, Carbon nanotube based battery architecture Applied Physics Letters 91 144104 (2007). http://doi.org/10.1063/1.2795328

J. Chen, Systematic electron crystallographic studies of self-assembled binary nanocrystal super-lattices, Chemical Materials 19, 4183–4188, (2007).

W. Wang, R. Epur, and P.N. Kumta, Vertically aligned silicon/carbon nanotube (VASCNT) arrays: hierarchical anodes for lithium-ion battery, Electrochemical Communications 13 429-432, (2011).

C. De las Casas, W.Z. Li, A review of application of carbon nanotubes for lithium ion battery anode material, J. Power Sources, 208, 74–85 (2012)

Z. H .Yang, and H.Q. Wu, Mater. Chem. Phy, 71, 7–11 (2001).

D. Qian, G.J. Wagner, W.K. Liu, M.F. Yu, R.S. Ruoff, Mechanics of carbon nanotubes. Appl. Mech. Rev. 55, 495–533, (2002)

A. Rubio, J. L. Corkill, M. L. Cohen, Theory of graphitic boron nitride nanotubes, Phys. Rev. B 49, 5801 (1994).

N. G. Chopra, R. J. Luyken, and K. Cherrey, Boron nitride nanotubes, Science 269, 966 (1995). https://doi.org/SCIEAS

L. F. Sun, S. S. Xie, W. Liu, W. Y. Zhou, and Z. Q. Liu, Nature 403, 384, (2000). doi :10.1038/35000290

S. Yang, H. Song, X. Chen, A.V. Okotrub, L.G. Bulusheva, Electrochemical performance of arc-produced carbon nanotubes as anode material for lithium-ion batteries. Electrochim. Acta, 52, 5286–5293, (2007)

S. Okada, S. Saito, A. Oshiyama, Interwall interaction and electronic structure of double‐walled BN nanotubes, Phys. Rev. B 65, 165410 (2002). https://doi.org/10.1103/PhysRevB.65.165410

D.S. Wilkinson, Mass Transport in Solid and Fluids, Cambridge University Press, (2000)

H. Mehrer, Diffusion in Solids - Fundamentals, Methods, Materials , pp. 27–36 (2007)

D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd

edition, Chapman & Hall, pp. 1–109 (1992).

R.H. Petrucci, W.S. Harwood, General Chemistry, 7th edition, Prentice-Hall, 1997, pp. 315–343

H. Dehmelt, A Single Atomic Particle Forever Floating at Rest in Free Space: New Value for Electron Radius, Physica Scripta T22 102–110 (1988). http://dx.doi.org/10.1088/0031-8949 /1988/ T22/016

J. Molenda, Electronic Aspect of Intercalation in Layered, Spinel and Olivine Type Cathode Materials, Polish Journal of Chemistry 78 1413–1421 (2004)

C. Wang, and J. Hong, Ionic/electronic conducting characteristics of LiFePO4 cathode materials, Electrochemical and Solid-State Letters 10 (3) A65–A69 (2007)

R.A. Huggins, in: C.A.C. Sequeira, A. Hooper (Eds.), Proceedings of the NATO

Advanced Study Institute on Solid State Batteries, Alcabideche, Portugal, September 2–17, (1984).

N.A. Kaskhedikar, J. Maier, Lithium storage in carbon nanostructures, Advanced Materials, 21, (25-26), 2664-2680 (2009).

J. Cabana, L. Monconduit, D. Larcher, and M.R. Palacin, Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through, Advanced Materials, 22, (35), E170-E192 (2010).

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and L.J.M. Tarascon, Synthesis and enhanced ... negative-electrode materials for lithium-ion batteries, Nature, 407, (6803), 496-499 (2000).

J. C. Park, J. Kim, H. Kwon, H. Song, Gram-scale synthesis of Cu2O nano-cubes and subsequent oxidation to anode materials, Advanced Materials, 21, (7), (2009).

C. M. Ban, Z.C. Wu, D.T. Gillespie, L. Chen, Y.F. Yan, J.L. Blackburn, and A.C. Dillon, Materials, 22, (20) (2010).

G.M. Ehrlich, in: David Linden (Ed.), Handbook of Batteries, 3rd ed., McGrawHill, 35.16–35.21 (2002).

A.V. Churikov, N.A. Gridina, N.V. Churikova, in: V. Igor, Barsukov, S.Christopher, Johnson, E. Joseph, Doninger, Z. Vyacheslav, Barsukov (Eds.), New Carbon Based Materials for Electrochemical Energy Storage Systems, Springer, 269–276 (2006).

A. Funabiki, M. Inaba, Z. Ogumi, S.I. Yuasa, J. Otsuji, and A. Tasaka, Journal of the

Electrochemical Society 145 (1) 172–178 (1998).

Y.N. Li, and J. Yang, Z. Jiang, Intercalation of lithium ions into bulk and powder highly oriented pyrolytic graphite, Journal of Physics and Chemistry of Solids 67 882–886 (2006).

B. Scrosati, and J. Garche, Lithium batteries: status, prospects and future, Journal of Power Sources, 195, (9), 2419-2430 (2010).

F. Cheng, J. Liang, Z. Tao, and J. Chen, Functional materials for rechargeable batteries, Advanced Materials, 23, (15), 1695-1715 (2011).

T. Lu, F. Chen, Multiwfn: A Multifunctional Wavefunction Analyzer, Acta Chim. Sinica, 69, 2393-2406 (2011)

T. Lu, F. Chen, The target molecular systems are the isomeric CH3OBr/BrCH2OH system and Marching Tetrahedra algorithm, J. Mol. Graph. Model 38, 314-323 (2012)

T. Lu, F.Chen Multiwfn: A Multifunctional Wave-function Analyzer, J. Comp. Chem. 33 580-592, (2012)

R.F.W. Bader, atoms in Molecule: A quantum Theory, Oxford Univ. press, Oxford, (1990).

Becke and Edgecombe, A simple measure of electron localization in atomic and molecular systems, J. Chem. Phys., 92, 5397-5403, (1990).

A. Savin, Angew, Atomic shell structure and electron numbers, Chem. Int. Ed.Engl, 31, 187 (1992) https://doi.org/10.1002/anie.199201871

V.G. Tsirelson, Yu.A. Abramov. On the Possibility of Kinetic Energy Density Evaluation from the function from electron density, Chem. Phys. Lett, 351, 142–148 (2002).

H.L. Schmider ,A.D. Becke ,Extracting Information about Chemical Bonding from Molecular Electron, J Mol Struct (Theochem) 527,51 50 (2000). https://doi.org/10.1016/S0166-1280(00)00477-2

Jacobsen, Localized-orbital locator (LOL) profiles of chemical bonding, Can. J. Chem, 86(7), 695-702, (2008).DOI: 10.1139/v08-052

C. Aslangul, R. Constanciel, R. Daudel and P. Kottis, Aspects of the localizability theory and related methods, Adv. Quantum Chem 6, 93-141, (1972), https://doi.org/10.1016/S0065-3276 (08)60542-0

R.G.Parr, P.W.Ayers, R.F.Nalewajski, What is an atom in a molecule?, J Phys Chem A 109,3957–3959 (2005).

S. Noorizadeh and E. Shakerzadeh , Shannon entropy as a new measure of aromaticity, Shannon aromaticity, Phys. Chem. Chem. Phys, 12, 4742-4749 (2010). doi: 10.1039/b916509f.

J.S.Murray, and P. Politzer, in Quantitative Treatments of Solute/Solvent Interactions, J. Mol. Struct. (Theochem) 307, 55 (1994).

J. S. Murray, The electrostatic potential: an overview, Comput. Mol. Sci., 1, 153 (2011)

P. Politzer, J. S. Murray, Molecular electrostatic potentials and chemical reactivity in atoms and molecules, Theor. Chem. Acc. 108 134-142, (2002)

J.S. Murray, P. Lane, T Brinck, K. Paulsen, M.E. Grice P. Politzer, J. Phys. Chem, 97 9396 (1993).

M.W. Schmidt, K.K.Baldridge, J.A.Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen et al, A molecular system in FMO is divided into N fragments, also referred to as monomers 14(11) 1347–1363. (2004). https://doi.org/10.1002/jcc.540141112

Yan Zhao, Donald G. Truhlar, Theor Chem Account 120 215–241 (2008).

W. Kohn, L. J. Sham, Self-Consistent Equations Including Exchange and Correlation, Phys. Rev. 140 A 1133-1138 (1965). doi:10.1103/PhysRev.140.A1133

J.P. Perdew, K.Burke, Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, 77, 3865-3868 (1996)

D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, Nature (London) 389

(1997), https://doi.org/NATUAS

Yan Zhao, Donald G. Truhlar, Benchmark data for interactions in zeolite model complexes and their use, Accounts of Chemical Research, 41(2) 157-167 (2008).

C. E. Check, T. M. Gilbert, Progressive Systematic Underestimation of ... Involving Polycarbon Hydrocarbons, J. Org. Chem 70, 9828–9834 (2005).

S. Grimme, Seemingly, Simple Stereoelectronic Effects in Alkane Isomers and the Implications for Kohn–Sham Density Functional ,Angew. Chem., Int. Ed. 45 4460–4464 (2006)

B.H. Besler, K.M. Merz, P.A. Kollman, Electrostatics in Biornolecular Structure and Dynamics, J. comp. Chem. 11 431 (1990) https://doi.org/10.1002/jcc.540110404

L.E. Chirlian, M. M. Francl, Atomic charges derived from electrostatic potentials: a detailed study, J.comp.chem, 8 894-905 (1987). https://doi.org/JCCHDD

Brneman GM, Wiberg KB J. Comp Chem, 11, 361, J Clust Sci (22):673–692 (1990).

: F. Mollaamin, M.Monajjemi , Fractal dimension on carbon nanotube-polymer composite materials using percolation theory ,Journal of Computational and Theoretical Nanoscience 9 ,4 597-601 ( 2012) DOI: 10.1166/jctn.2012.2067

M. Monajjemi, H. Chegini, F. Mollaamin, P. Farahani, Theoretical studies of solvent effect on normal mode analysis and thermodynamic properties of zigzag (5, 0) carbon nanotube

,Fullerenes, Nanotubes, and Carbon Nanostructures. 2011, 19, 469–482 , DOI: 10.1080/1536383X.2010.494783

M. Monajjemi, R. Faham, F. Mollaamin, Ab initio study of direct diffusion pathway for H+, Li+, Na+, K+ cations into the (3, 3),(4, 4), and (5, 5) open-ended single-walled carbon nanotubes

,Fullerenes, Nanotubes, and Carbon Nanostructures, 20, 163–169, (2012), DOI: 10.1080/1536383X.2010.533310

H. Yahyaei, M. Monajjemi, Theoretical study of different solvent and temperature effects on double-walled carbon nanotubes (DWNTs) and calixarene with amino acid: A QM/MM study

,Fullerenes, Nanotubes, and Carbon Nanostructures.2014, 22(4), 346–361, DOI: 10.1080/1536383X.2012.684190

: V.S. Lee, P. Nimmanpipug, F. Mollaamin, et al , Investigation of single wall carbon nanotubes electrical properties and normal mode analysis, Russian Journal of Physical Chemistry A, 83 13 2288-2296 ( 2009) DOI: 10.1134/S0036024409130184

M. Monajjemi, M. Falahati, F. Mollaamin, Computational investigation on alcohol nano-sensors in combination with carbon nanotube: a Monte Carlo and ab initio simulation, Ionics, 19, 155–164, (2013), DOI: 10.1007/s11581-012-0708-x

H. Yahyaei, M. Monajjemi, H. Aghaie, Monte Carlo Quantum Calculation for Double-Walled Carbon Nanotubes (DWNTs) Combined to Calixarene, Journal of Computational and Theoretical Nanoscience, 10 , 10 , 2332-2341 ( 2013)

DOI: 10.1166/jctn.2013.3210 [134] M. Monajjemi, Cell membrane causes the lipid bilayers to behave as variable capacitors: A resonance with self-induction of helical proteins, Biophysical Chemistry. 207,114 –127, (2015), DOI: 10.1016/j.bpc.2015.10.003

L. Mahdavian, M. Monajjemi, Alcohol sensors based on SWNT as chemical sensors: Monte Carlo and Langevin dynamics simulation, Microelectronics Journal. 41(2-3), 142-149, (2010), DOI: 10.1016/j.mejo.2010.01.011

M. Monajjemi, Liquid-phase exfoliation (LPE) of graphite towards graphene: An ab initio study, Journal of Molecular Liquids, 230, 461-472 (2017), DOI: 10.1016/j.mejo.2010.01.011

Downloads

Published

2017-06-29

How to Cite

Monajjemi, M. (2017). Graphene/(h-BN) n/X-doped graphene as anode material in lithium ion batteries (X=Li, Be, B and N). Macedonian Journal of Chemistry and Chemical Engineering, 36(1), 101–118. https://doi.org/10.20450/mjcce.2017.1134

Issue

Section

Theoretical Chemistry