Molecular structure, vibrational spectra, NBO, Fukui function, HOMO-LUMO analysis and molecular docking study of 6-[(2-methylphenyl)sulfanyl]-5-propylpyrimidine-2,4(1H,3H)-dione

Haitham AlRabiah, S Muthu, Fatmah Al-Omary, Abdul-Malek Al-Tamimi, M Raja, R Raj Muhamed, Ali Abdel-Rahman El-Emam


Theoretical and experimental FT-IR and FT-Raman vibrational spectral analysis of 6-[(2-methylphenyl)sulfanyl]-5-propylpyrimidine-2,4(1H,3H)-dione have been recorded in the region 4000-400 cm-1 and 4000-100 cm-1 insolid phase. The molecular geometrical parameters, bond length, bond angle and vibrational wave numbers, harmonic vibrational frequency were investigated using the density functional theory B3LYP method with the 6-311++G(d,p) basis set. The stability of the molecule has been investigated using the natural bond orbital (NBO) analysis. The electronic properties such as HOMO-LUMO energies were determined by the time-dependent DFT approach. The thermodynamical properties and the first order hyperpolarizability and molecular electrostatic potential (MEP) of the title compound were also studied. The electron density-based local reactivity descriptors such as the Fukui functions were calculated to explain the chemical selectivity or reactivity site in the molecule. The molecule orbital contributions were investigated using the total density of states (TDOS), the sum of 𝛼 and 𝛽 electron density of states (𝛼𝛽DOS). The molecular docking (ligand-protein) simulations have been performed using the SWISSDOCK server. The full fitness (FF) score and hydrogen bonding interaction and binding affinity values revealed that title compound can act as potential inhibitor against HIV-1 protease.


FT-IR; FT-Raman; NBO; MEP; Fukui function; pyrimidine-2,4(1H,3H)-dione; Molecular docking

Full Text:



R. Ragno, A. Mai, S. Sbardella, M. Artico, S. Massa, C. Musiu, M. Mura, T. Marceddu, A. Cadeddu, P. La Colla, Computer-aided design, synthesis, and anti-HIV-1 activity in vitro of 2-alkylamino-6-[1-(2,6-difluorophenyl)alkyl]-3,4-dihydro-5-alkylpyrimidin-4(3H)-ones as novel potent non-nucleoside reverse transcriptase inhibitors also active against the Y181C variant, J. Med. Chem. 47, 928–934 (2004). DOI: 10.1021/jm0309856

X. Lu, Y. Chen, Y. Guo, Z. Liu, Y. Shi, Y. Xu, X. Wang, Z. Zhang, J. Liu, The design and synthesis of N-1-alkylated-5-aminoaryalkylsubstituted-6-methyluracils as potential non-nucleoside HIV-1 RT inhibitors, Bioorg. Med. Chem. 15, 7399–7407 (2007).

DOI: 10.1016/j.bmc.2007.07.058

A. A. El-Emam, M. A. Massoud, E. R. El-Bendary, M. A. El-Sayed, Synthesis of certain 6-substituted uracils and related derivatives as potential antiviral agents, Bull. Kor. Chem. Soc. 25, 991–996 (2004).

DOI: 10.5012/bkcs.2004.25.7.991

N. R. El-Brollosy, O. A. Al-Deeb, A. A. El-Emam, E. B. Pedersen, P. La Colla, G. Collu, G. Sanna, L. Roberta, Synthesis of novel uracil non-nucleoside derivatives as potential reverse transcriptase inhibitors of HIV-1, Arch. Pharm. 342, 663–670 (2009).

DOI: 10.1002/ardp.200900139

M. Artico, S. Massa, A. Mai, M.E. Marongiu, G. Piras, E. Tramontino, P. La Colla, 3,4-Dihydro-2-alkyloxy-6-benzyl-4-oxoypyrimidines (DABOs): a new class of specific inhibitors of human immunodeficiency virus type 1, Antiviral Chem. Chemother. 4, 361–368 (1993). DOI: 10.1177/095632029300400608

R. Kumar, W. Semaine, M. Johar, D. L. J. Tyrrell, B. Agrawal, Effect of various pyrimidines possessing the 1-[(2-hydroxy-1-(hydroxymethyl)ethoxy)methyl] moiety, able to mimic natural 2β€˜-deoxyribose, on wild-type and mutant hepatitis B virus replication, J. Med. Chem. 49, 3693–3700 (2006). DOI: 10.1021/jm010410d

M. N. Brunelle, J. Lucifora, J. Neyts, S. Villet, A. Holy, C. Trepo, F. Zoulim, In vitro activity of 2,4-diamino-6-[2-(phosphonomethoxy)ethoxy]-pyrimidine against mul-tidrug-resistant hepatitis B virus mutants, Antimicrob. Agents Chemother. 51, 2240–2243 (2007).

DOI: 10.1128/AAC.00138-06

Y. Ding, J. L. Girardet, K. L. Smith, G. Larson, B. Prigaro, J. Z. Wu, N. Yao, Parallel synthesis of 5-cyano-6-aryl-2-thiouracil derivatives as inhibitors for hepatitis C viral NS5B RNA-dependent RNA polymerase, Bioorg. Chem. 34, 26–38 (2006).

DOI: 10.1016/j.bioorg.2005.10.001

K. K. Gauni, H. Kohlhage, Reassessment of the rationale for the combinations of sulphonamides with diaminopyrimidines, Chemotherapy 14, 158–169 (1969). DOI: 10.1159/000220625

P. Russ, P. Schelling, L. Scapozza, G. Folkers, E. De Clercq, V. E. Marquez, Synthesis and biological evalua-tion of 5-substituted derivatives of the potent antiherpes agent (north)-methanocarbathymine, J. Med. Chem. 46, 5045–5054 (2003). DOI: 10.1021/jm00128a029

R. S. Klein, M. Lenzi, T. H. Lim, K. A. Hotchkiss, P. Wilson, E. L. Schwartz, Novel 6-substituted uracil ana-logs as inhibitors of the angiogenic actions of thymidine phosphorylase, Biochem. Pharmacol. 62, 1257–1263 (2001). DOI: 10.1016/S0006-2952(01)00783-3

O. N. Al-Safarjalani, X. Zhou, R. H. Rais, J. Shi, R. F. Schinazi, F. N. M. Naguib, M. H. El Kouni, 5-(Phenylthio)acyclouridine: a powerful enhancer of oral uridine bioavailability: relevance to chemotherapy with 5-fluorouracil and other uridine rescue regimens, Cancer Chemother. Pharmacol. 55, 541–551 (2005).

DOI: 10.1007/s00280-004-0967-y

K. Ghoshal, S. T. Jacob, An alternative molecular mech-anism of action of 5-fluorouracil, a potent anticancer drug, Biochem. Pharmacol. 53, 1569–1575 (1997).

DOI: 10.1016/S0006-2952(97)00040-3

N. Sirisoma, S. Kasibhatla, B. Nguyen, A. Pervin, Y. Wang, G. Claassen, B. Tseng, J. Drewe, S. X. Cai, Dis-covery of substituted 4-anilino-2-(2-pyridyl)pyrimidines as a new series of apoptosis inducers using a cell- and caspase-based high throughput screening assay. Part 1: Structure-activity relationships of the 4-anilino group, Bioorg. Med. Chem. 14, 7761–7773 (2006).

DOI: 10.1016/j.bmc.2006.08.002

H. H. Locher, H. Schlunegger, P. G. Hartman, P. Anghern, R. L. Then, Antibacterial activities of epiroprim, a new dihydrofolate reductase inhibitor, alone and in combination with dapsone, Antimicrob. Agents Chemother. 40, 1376–1381 (1996).

C. A. Sincak, A novel diaminopyrimidine for the treat-ment of resistant Gram-positive infections, Ann. Pharmacother. 43, 1107–1114 (2009). DOI: 10.1345/aph.1L167

E. S. Al-Abdullah, A. A. Al-Turkistani, O. A. Al-Deeb, N. R. El-Brollosy, E. E. Habib, A. A. El-Emam, Pyrimi-dine-5-carbonitriles, II: Synthesis and antimicrobial ac-tivity of novel 6-alkyl-2,4-disubstituted pyrimidine-5-carbonitriles, Drug Res. 64, 31–39 (2014).

DOI: 10.1055/s-0033-1351315

E. S. Al-Abdullah, A. R. Al-Obaid, O. A. Al-Deeb, E. E. Habib, A. A. El-Emam, Synthesis of novel 6-phenyl-2,4-disubstituted pyrimidine-5-carbonitriles as potential an-timicrobial agents, Eur. J. Med. Chem. 46, 4642–4647 (2011). DOI: 10.1016/j.ejmech.2011.08.003

W. Brumfitt, J. M. Hamilton-Miller, Reassessment of the rationale for the combinations of sulphonamides with diaminopyrimidines, J. Chemother. 5, 465–469 (1993). DOI: 10.1080/1120009X.1993.11741097

D. Tassel, M. A. Madoff, Treatment of candida sepsis and cryptococcus meningitis with 5-fluorocytosine. A new antifungal agent, J. Am. Med. Assoc. 206, 830–832 (1968). DOI: 10.1001/archinte.1975.00330020035003

A. Mai, D. Rotili, S. Massa, G. Brosch, G. Simonetti, C. Passariello, A. Palamara, Discovery of uracil-based his-tone deacetylase inhibitors able to reduce acquired anti-fungal resistance and trailing growth in candida albicans, Bioorg. Med. Chem. Lett. 17, 1221–1225 (2007).

DOI: 10.1016/j.bmcl.2006.12.028

A. F. Cowman, M. J. Morry, B. A. Biggs, G. A. Cross, S. J. Foote, Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum, Proc. Natl. Acad. Sci. USA 85, 9109–9113 (1988).

A. Sardarian, K. T. Douglas, M. Read, P. F. G. Sims, J. E. Hyde, P. Chitnumsub, R. Sirawaraporn, W. Sirawaraporn, Pyrimethamine analogs as strong inhibitors of double and quadruple mutants of dihydrofolate reductase in human malaria parasites, Org. Biomol. Chem. 1, 960–964 (2003). DOI: 10.1039/B211636G

C. Sirichaiwat, C. Intaraudom, S. Kamchonwongpaisan, J. Vanichtanankul, Y. Thebtaranonth, Y. Yuthavong, Target guided synthesis of 5-benzyl-2,4-diamono-pyrimidines: Their antimalarial activities and binding af-finities to wild type and mutant dihydrofolate reductases from Plasmodium falciparum, J. Med. Chem. 47, 345–354 (2004). DOI: 10.1021/jm0303352

B. K. Singh, M. Mishra, N. Saxena, G. P. Yadav, P. R. Maulik, M. K. Sahoo, R. L. Gaur, P. K. Murthy, R. P. Tripathi, Synthesis of 2-sulfanyl-6-methyl-1,4-dihydro-pyrimidines as a new class of antifilarial agents, Eur. J. Med. Chem. 43, 2717–2723 (2008).

DOI: 10.1016/j.ejmech.2008.01.038

R. Pontikis, R. Benhida, A. H. Aubertin, D. S. Grieson, C. Monneret, Synthesis and anti-HIV activity of novel N-1 side chain-modified analogs of 1-[(2-hydroxy-ethoxy)methyl]-6-(phenylthio)thymine (HEPT), J. Med. Chem. 40, 1845–1854 (1997). DOI: 10.1021/jm960765a

A. L. Hopkins, J. Ren, R. M. Esnouf, B. E. Willcox, E. Y. Jones, C. Ross, T. Miyasaka, R. T. Walker, H. Tanaka, D. K. Stammers, D. I. Stuart, Complexes of HIV-1 reverse transcriptase with Inhibitors of the HEPT Series reveal conformational changes relevant to the de-sign of potent non-nucleoside inhibitors, J. Med. Chem. 39, 1589–1600 (1996). DOI: 10.1021/jm960056x

H. Tanaka, H. Takashima, M. Ubasawa, K. Sekiya, I. Nitta, M. Baba, S. Shigeta, R. T. Walker, E. De Clercq, T. Miyasaka, Synthesis and antiviral activity of deoxy analogs of 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio) thymine (HEPT) as potent and selective anti-HIV-1 agents, J. Med. Chem. 35, 4713–4719 (1992).

DOI: 10.1021/jm00103a009

T. Miyasaka, H. Tanaka, M. Baba, H. Hayakawa, R. T. Walker, J. Balzarini, E. De Clercq, A novel lead for spe-cific anti-HIV-1 agents 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine, J. Med. Chem. 32, 2507–2509 (1989). DOI: 10.1021/jm00132a002

M. I. Attia, A. A. El-Emam, A. A. Al-Turkistani, A. L. Kansoh, N. R. El-Brollosy, Synthesis of novel 2-(substituted amino)alkylthiopyrimidin-4(3H)-ones as po-tential antimicrobial agents, Molecules 19, 279–290 (2014). DOI: 10.3390/molecules19010279

N. Z. Alzoman, Y. S. Mary, C. Y. Panicker, I. A. Al-Swaidan, A. A. El-Emam, O. A. Al-Deeb, A. A. Al-Saadi, C. Van Alsenoy, J. A. War, Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO, NBO, MEP analysis and molecular docking study of 2-[(4-chlorobenzyl)sulfanyl]-4-(2-methylpropyl)-6-(phenylsulfanyl)-pyrimidine-5-carbonitrile, a potential chemotherapeutic agent, Spectrochim. Acta A 139, 413–424 (2015). DOI: 10.1016/j.saa.2014.12.043

N. G. Haress, A. A. El-Emam, O. A. Al-Deeb, C. Y. Panicker, A. A. Al-Saadi, C. Van Alsenoy, J. A. War, S. K. Srivastava, Vibrational spectroscopic and molecular docking study of 2-benzylsulfanyl-4-[(4-methylphenyl)-sulfanyl]-6-pentylpyrimidine-5-carbonitrile, a potential chemotherapeutic agent, Spectrochimica Acta A 137, 569–580 (2015). DOI: 10.1016/j.saa.2014.08.112

E. S. Al-Abdullah, Y. S. Mary, C. Y. Panicker, N. R. El-Brollosy, A. A. El-Emam, C. Van Alsenoy, A. A. Al-Saadi, Theoretical investigations on the molecular struc-ture, vibrational spectra, HOMO-LUMO analyses and NBO study of 1-[(cyclopropylmethoxy)methyl]-5-ethyl-6-(4-methylbenzyl)-1,2,3,4-tetrahydropyrimidine-2,4-dione, Spectrochim. Acta A 133, 639–650 (2014).

DOI: 10.1016/j.saa.2014.06.042

Y. Sert, A. A. El-Emam, O. A. Al-Deeb, A. A. Al-Turkistani, Γ‡. Γ‡irak, F. Ucun, The biomolecule, 2-[(2-methoxyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihyd-ropyrimidine-5-carbonitrile: FT-IR, Laser-Raman spectra and DFT, Spectrochim. Acta A 126, 86–97 (2014). DOI: 10.1016/j.saa.2014.01.140

M. A. Al-Alshaikh, O. A. Al-Deeb, N. Z. Alzoman, A. A. El-Emam, R. Srivastava, A. K. Sachan, O. Prasad, L. Sinha, Spectroscopic and electronic structure calculation of a potential chemotherapeutic agent 5-propyl-6-(p-tolylsulfanyl)pyrimidine-2,4(1H,3H)-dione using first principles, J. Mol. Struct. 1100, 225–226 (2015).

DOI: 10.1016/j.molstruc.2015.07.042

N. G. Haress, H. A. Ghabbour, A. A. El-Emam, C. S. Chidan Kumar, H.-K. Fun, 6-[(2-Methylphenyl) sulfanyl]-5-propylpyrimidine-2,4(1H,3H)-dione, Acta Cryst. E70, o768–o769 (2014).

DOI: 10.1107/S1600536814013269

S. S. Gupta, A. Marchno, R. D. Pradhan, C. F. Desai, J. Melikechi, Pump-probe thermal lens near-infrared spec-troscopy and Z-scan study of zinc (tris) thiourea sulfate, J. Appl. Phys. 89, 4939–4943 (2001).

DOI: 10.1063/1.135825

S. P. Karna, Electronic and nonlinear optical materials: The role of theory and modeling, J. Phys. Chem. A 104, 4671-4673 (2000). DOI: 10.1021/jp001296y

D. R. Kanis, M. A. Ratner, T. J. Marks, Design and con-struction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects, Chem. Rev. 94, 195–242 (1994).

DOI: 10.1021/cr00025a007

H. S. Nalwa, S. Miyata, Nonlinear Optical Properties of Organic Molecules and Polymers, CRC Press, Boca Ra-ton, FL, 1996.

M. Govindarajan, M. Karbacak, V. Udayakumar, S. Periandy, FT-IR, FT-Raman and UV spectral investiga-tion: Computed frequency estimation analysis and elec-tronic structure calculations on chlorobenzene using HF and DFT, Spectrochim. Acta A 88, 37–48 (2012).

DOI: 10.1016/j.saa.2011.11.052

Gaussian Inc, Gaussian 03 Program, Guassion Inc., Wallingford, CT, 2004.

H. B. Schlegel, Optimization of equilibrium geometries and transition structures, J. Comput. Chem. 3, 214–218 (1982). DOI: 10.1002/jcc.540030212

M. H. Jamroz, Vibrational Energy Distribution Analysis: VEDA 4 Program, Warsaw, 2004.

A. E. Reed, F. Weinhold, Natural localized molecular orbitals, J. Chem. Phys. 83, 1736–1740 (1985).

DOI: 10.1063/1.449360

G. Keresztury, S. Holly, G. Besenyei, J. Varga, A. Y. Wang, J. R. Durig, Vibrational spectra of monothiocarbamates-II. IR and Raman spectra, vibra-tional assignment, conformational analysis and ab initio calculations of S-methyl-N,N-dimethylthiocarbamate, Spectrochim. Acta A 49, 2007–2017 (1993).

DOI: 10.1016/S0584-8539(09)91012-1

G. Keresztury, J. M. Chalmers, P. R. Griffith (Eds.), Raman Spectroscopy: Theory – Handbook of Vibrational Spectroscopy, John Wiley & Sons, New York, 2002.

Y. Wang, S. SaebΓΈ, C. U. Pittman Jr., The structure of aniline by ab initio studies, J. Mol. Struct. THEOCHEM. 281, 91–98 (1993).

DOI: 10.1016/0166-1280(93)87064-K

G. Socrates, Infrared and Raman Characteristic Fre-quencies, Third ed., John Wiley & Sons Ltd., Chichester, 2001.

L. J. Bellamy, The Infrared Spectra of Complex Mole-cule, third ed., Wiley, New York, 1975.

M. Pagannone, B. Fornari, G. Mattei, Molecular structure and orientation of chemisorbed aromatic carboxylic acids: Surface enhanced Raman spectrum of benzoic acid adsorbed on silver sol, Spectrochim. Acta 43, 621–625 (1987). DOI: 10.1016/0584-8539(87)80143-5

P. S. Patil, S. M. Dharmaprakash, Synthesis, growth and characterization of second-order nonlinear optical crystal: 5-Br-2-thienyl-4β€²-methoxychalcone, J. Cryst. Growth 305, 218–221 (2007).

DOI: 10.1016/j.jcrysgro.2007.04.038

N. B. Colthup, L. H. Daly, S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 3rd. ed., Academic Press, Boston, MA, 1990.

N. P. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York, 1994.

G. Litivinow, Proceedings of the XII International con-ference on Raman spectroscopy, Wurzburg, Germany, 1992.

M. Siva Priya, T. A. Benitta, C. James, Vibrational spec-troscopic investigation and normal coordinate analysis of the fibrate hypolipidemic agent 5-(2,5-dimeΒ¬thylphenoxy)-2,2-dimethyl pentanoic acid (Gemfibrozil), J. Mol. Struct. 990, 253–262 (2011).

DOI: 10.1016/j.molstruc.2011.01.054

M. Kandasamy, G. Velraj, Ab initio/DFT electronic structure calculations, spectroscopic studies of 5-bromo-2-pyridinecarbonitrile – A comparative study, Solid State Sci. 14, 1071–1079 (2012).

DOI: 10.1016/j.solidstatesciences.2012.05.003

G. Gece, The use of quantum chemical methods in cor-rosion inhibitor studies, Corros. Sci. 50, 2981–2992 (2008). DOI: 10.1016/j.corsci.2008.08.043

D. F. V. Lewis, C. Loannides, D. V. Parke, Interaction of a series of nitriles with the analysis of structure-activity relationships, Xenobiotica 24, 401–408 (1994). DOI: 10.3109/00498259409043243

P. Kolandaivel, G. Praveen, P. Selvarengan, Study of atomic and condensed atomic indices for reactive sites of molecules, J. Chem. Sci. 117, 591–598 (2005).

DOI: 10.1007/BF02708366

S. Muthu, E. Isac Paulraj, Spectroscopic and molecular structure (monomeric and dimeric structure) investigation of 2-[(2-hydroxyphenyl)carbonyloxy]benzoic acid by DFT method: A combined experimental and theoretical study, J. Mol. Struct. 1038, 145–162 (2013).

DOI: 10.1016/j.molstruc.2013.01.043

W. Yang, W. J. Mortier, The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines, J. Am. Chem. Soc. 108, 5708–5711 (1986). DOI: 10.1021/ja00279a008

Y. -X. Sun, Q. -L. Hao, W. -X. Wei, Z. -X. Yu, L. -D. Lu, X. Wang, Y. -S. Wang, Experimental and density functional studies on 4-(3,4-dihydroxybenzylidene-amino)antipyrine, and 4-(2,3,4-trihydroxybenzylidene-amino)antipyrine, J. Mol. Struct. THEOCHEM 904, 74–82 (2009). DOI: 10.1016/j.theochem.2009.02.036

H. W. Thomson, P. Torkington, The vibrational spectra of esters and ketones, J. Chem. Soc. 171, 640–645 (1945). DOI: 10.1039/JR9450000640

M. Szafran, A. Komasa, E. B. Adamska, Crystal and molecular structure of 4-carboxypiperidinium chloride (4-piperidinecarboxylic acid hydrochloride), J. Mol. Struct. THEOCHEM 827, 101–107 (2007).

DOI: 10.1016/j.molstruc.2006.05.012

J. Liu, Z. Chen, S. Yuan, Study on the prediction of visible absorption maxima of azobenzene compounds, J. Zhejiang Univ. Sci. B. 6, 584–589 (2005).

DOI: 10.1631/jzus.2005.B0584

M. Nakano, H. Fujita, M. Takahata, K. Yamaguchi, Theoretical study on second hyperpolarizabilities of phenylacetylene dendrimer: Toward an understanding of structure-property relation in NLO responses of fractal antenna dendrimers, J. Am. Chem. Soc. 124, 9648–9655 (2002). DOI: 10.1021/ja0115969

D. Sajan, I. Joe, V. S. Jayakumar, J. Zaleski, Structural and electronic contributions to hyperpolarizability in methyl p-hydroxy benzoate, J. Mol. Struct. 785, 43–53 (2006). DOI: 10.1016/j.molstruc.2005.09.041

K. S. Thanthiriwatte, K. M. N. de Silva, Non-linear opti-cal properties of novel fluorenyl derivatives – ab initio quantum chemical calculations, J. Mol. Struct. THEOCHEM 617, 169–175 (2002).

DOI: 10.1016/S0166-1280(02)00419

S. G. Sagdinc, A. Esme, Theoretical and vibrational studies of 4,5-diphenyl-2-2 oxazole propionic acid (oxaprozin), Spectrochim. Acta A 75, 1370–1376 (2010). DOI: 10.1016/j.saa.2010.01.004

S. Muthu, G. Ramachandran, Spectroscopic studies (FTIR, FT-Raman and UV-Visible), normal coordinate analysis, NBO analysis, first order hyper polarizability, HOMO and LUMO analysis of (1R)-N-(prop-2-yn-1-yl)-2,3-dihydro-1H-inden-1-amine molecule by ab initio HF and density functional methods, Spectrochim. Acta A 121, 394–403 (2014). DOI: 10.1016/j.saa.2013.10.093

S. Muthu, T. Rajamani, M. Karabacak, A. M. Asiri, Vibrational and UV spectra, first order hyperpolarizability, NBO and HOMO-LUMO analysis of 4-chloro-N-(2-methyl-2,3-dihydroindol-1-yl)-3-sulfamoyl-benzamide, Spectrochim. Acta A 122, 1–14 (2014).

DOI: 10.1016/j.saa.2013.10.115

P. Politzer, D. G. Truhlar (Eds.), Chemical Application of Atomic and Molecular Electrostatic Potentials, Plenum, New York, 1981.

E. E. Porchelvi, S. Muthu, The spectroscopic (FT-IR, FT-Raman and NMR), NCA, Fukui function analysis first order hyperpolarizability, TGA of 6-chloro-3,4dihydro-2H-1,2,4-benzothiazine-7-sulphonamide1,1-dioxide by ab initio HF and Density Functional method, Spectrochim. Acta A 123, 230–240 (2014).

DOI: 10.1016/j.saa.2013.12.037

P. Politzer, J. Murray, The fundamental nature and role of the electrostatic potential in atoms and molecules, Theor. Chem. Acc. 108, 134–142 (2002).

DOI: 10.1007/s00214-002-0363-9

N. M. O’Boyle, A. L. Tenderholt, K. M. Langer, cclib: A library for package-independent computational chemistry algorithms, J. Comput. Chem. 29, 839–845 (2008). DOI: 10.1002/jcc.20823

S. Muthu, G. Ramachandran, E. I. Paulraj, T. Swaminathan, Quantum mechanical study of the structure and spectroscopic (FTIR, FT-Raman), first-order hyperpolarizability and NBO analysis of 1,2-benzoxazol-3-ylmenthane sulfonamide, Spectrochim. Acta A 128, 603–613 (2014). DOI: 10.1016/j.saa.2014.02.183

M. Chen, U. V. Waghmare, C. M. Friend, F. Kaxiras, A density functional study of clean and hydrogen-covered Ξ±-MoO3 (010): Electronic structure and surface relaxa-tion, J. Chem. Phys. 109, 6680–6854 (1998).

DOI: 10.1063/1.477252

S. Muthu, E. I. Palulraj, Spectroscopic and molecular structure (monomeric and dimeric structure) investigation of 2-[(2-hydroxyphenyl) carbonyloxy]benzoic acid by DFT method: A combined experimental and theoretical study, J. Mol. Struct, 1038, 145–162 (2013).

DOI: 10.1016/j.molstruc.2013.01.043

N. G. Haress, F. Al-Omary, A. A. El-Emam, Y. S. Mary, C. Y. Panicker, A. A. Al-Saadi, J. A. War, C. Van Alsenoy, Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analy-sis and molecular docking study of 2-(adamantan-1-yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole, Spectrochim. Acta A 135, 973–983 (2014). DOI: 10.1016/j.saa.2014.07.077

T. Karthick, V. Balachandran, S. Perumal, Spectroscopic investigations, molecular interactions, and molecular docking studies on the potential inhibitor β€œthiophene-2-carboxylicacid", Spectrochim. Acta A 141, 104–112 (2015). DOI: 10.1016/j.saa.2015.01.025

R. Huey, G. M. Morris, A. J. Olson, D. S. Goodsell, A semiempirical free energy force field with charge-based desolvation, J. Comput. Chem. 28, 1145–1152 (2007). DOI: 10.1002/jcc.20634

W. L. Delano, The PyMOL Molecular Graphics System, Version 1.8 SchrΓΆdinger, LLC (2012).



Copyright (c) 2017 Ali Abdel-Rahman El-Emam

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.